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Abstract

Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-
Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann
transform relating Fock wave functions <.z|r %> and a set of relativistic Hermite polynomials
HY(z), (N = mc?/hw). Nevertheless, the relativistic creation and annihilation operators
satisfy typical relativistic commutation relations [z, 2)[} ~ Energy (an SL(2,R) algebra).
Here we find higher-order polarization operators on the SL(2, R) group, providing canonical
creation and annihilation operators satisfying [a, &7‘] =1, the eigenstates of which are “true”
coherent states.

1 Group Quantization and the Relativistic Harmonic Os-
cillator (RHO) in the Bargmann-Fock-like realization.

The quantization of relativistic systems in a manifestly covariant way requires the use of com-
mutation relation of the form [Z, p] & Energy, which means a deviation from the canonical rules.
If the Hamiltonian, & and p close a Lie algebra, it is possible to resort to some kind of group
quantization method, i.e. some technique of obtaining unitary irreducible representations of a
group the Lie algebra of which coincides with the Poisson algebra of the physical system. In the
present case there is a Lie algebra, a central extension of SL(2, R) (SO(3,2) in 3+1 dimensions):

l
[E’ :L'] = —Z—T;p’ [Eap] = lmzh‘r’ ZE,P] = Zh(l + WE) ’ (1)

which reproduces the Poincaré algebra under the w — 0 limit and the Newton (non-relativistic

harmonic oscillator) algebra when ¢ — oo and that, therefore, earns to be considered as the
algebra of a relativistic harmonic oscillator.
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Then, our starting point will be a central pseudo-extension of the group SL(2, R), denoted by
SL(2, R)®U(1) (1], whose coboundary is generated by a function which is an integer power of the
parameter of the Cartan subgroup. The precise techniques of the group-quantization procedure
[2] will be explained on the way.

The G = SL(2, R)®U(1) group law is:

"oo_ -2 ' z
zB = 2z +zfc+————N(1+n)

*

N(1 + &)

2 14+« 14+« 2 2 Z'z* 2z .
noo_ ' 1o '
”o= V1+n"[\/ 2 \[2 ""+V1+K'V1+n<2N"" TN ’7)} (2)

C" — C'C(TI"TI'_IU_I)_W,

(z*z:n—z + Z'*Z'I]2)

z"" — zl*n2+ztnl+ (ZZ'*T]2+Z’Z*T]_2)

where

222"

N
1
" = K'K+—N(Z*Z’7]_2 +Z’*2772) :

K

nl+

and z € C,neUQ)C SL(2,R),{ € U(l) and N = ",f It must be noted that N is quantized

(N =1,3/2,2,5/2, ...) on SL(2, R) but a positive number on the Universal covering group.
The coboundary

A= (nn )" SLE,R) x SLE2,R) - U(1), (3)

which is generated by
7V SLE,R) - U(1), )

realizes a pseudo-extension. We say that A is a pseudo-cocycle and realizes a pseudo-extension
rather than a trivial cocycle (coboundary) realizing a trivial extension because in the ¢ — oo limit,
(n"n’_'n'l)_zN goes to a true cocycle on the non-relativistic harmonic oscillator (Newton) group
(see [3] for a general study!of the contraction process under which a true cocycle is generated by
a coboundary). ‘

Group quantization uses the (exponential of the) right-invariant vector fields, which act on
U(1)-equivariant complex functions on G as ordinary derivatives, to define a group representa-
tion (Bohr-Sommerfeld quantization). This representation is reducible, as can be stated by the
existence of non-trivial operators (all the left-invariant vector fields) commuting with the repre-
sentation.

The full quantization is achieved by reducing this representation in a way compatible with the
action of right vector fields. The reduced Hilbert space is made of complex functions ¥ on G such
that

Y(C*g) = (-¥(g), C€U()g9€CG

~

Xty = 0, VXlep
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where a Polarizarion P is a maximal left subalgebra containing the generators in the kernel of A
and excluding the central generator = = XCL of U(1).
The left- and right-invariant vector fields are:

X5 = w1 - 1o

0z  2N(1+k) on 1+«
X = "az* - 2N(z1z+ k) (i”%) * 1:LG5
X,’L = ai —2zz§ + 2:2° 5% (5)
X(L = ZC@C =,
3 -2 14 k)2 ¢ 2 o
S ey [( Tt a(; W (”’%) “Z*E]
2 2 2 ¢
XE = (IZK) [(1 +2~) az* n ZN% +z'-;[— (in%) —izE] (6)
Xf = in%
X§ = ig% =Z.
The operators are
;= XE, ZTE—Xf, HE%ff:i’(tR_iE, (7)
where n = ¢'® and 0 = ¢l with the commutation relations
[f1,2] = -3, [H,éf] =3t [2,27] =1+ %H ! 8)

A polarization is given by P =< XL XL >, with solutions

y = (26_2'"9cn®f(z,z')

. 1 (2N +n-1)! 2N -1 /14+6\"V"
O (z2,2%) W\/—J IN 1) (2N)n\/:N'< 5 ) z (9)

dzdz" 1
- -

which constitute the Fock-Bargmann-like space with the group invariant measure
The relativistic Fock space is given by:

(zHmjo >
VRS + 5%)

'In reality the measure on the whole group is M but the time variable (or #) can be factorized out.

<00>=1, |n>= (10)
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fn> = \ﬂz(l+—2N—l)|n-—1>
éT|n> = \/(n+1)( + )|n+1> (11)

Hn> = nn>

2 Relativistic cohereni states (RCS).

In the group-quantization scheme, the coherent states (generalizing the standard non-relativistic
coherent states [4]), as well as the wave functions given above, are defined by mean of infinitesimal
relations (differential polarization equations), rather than a finite group action on the vacuum
associated with a previously given representation of the group [5,6] (see [7,8,9] for a more general
study of overcomplete families of satates non-necessarily associated with groups). They are defined
simply as:

lz>=) OV (z,2%)n > & ON(z,2%) =< z|n > (12)

The associated (time-independent) wave functions < z'|z >= ®,(2') correspond to the choice
Cn = cn(2) = ON(2,2%) in ¥(2').

The RCS are identified with the generalized coherent states on the unit complex disk [5] once
the change of variables zp = \/_%H"_'< € D (z € C), has been made, where D is the unit complex
disk.

The expectation valuqs of 5 and 3! in the coherent states are < # >= <—<ZZTL£—’->—>- = z and

<t s= z*, making the variables z,z* € C specially suitable to describe the [Bargmann-Fock-
like representation. Defining the operators Z and p in the usual way, i.e.

i (44) o= (-9

we get < & >= z, < p >= p, where r and p are defined in the same way, constituting the
phase-space coordinates for Anti-deSitter space-time.

Repeating the group quantization in the new variables we obtain the x-representation in terms
of the relativistic Hermite Polynomials [10]. Both representations are related through the Rela-
tivistic Bargmann transform {11], the kernel of which is nothing other than the configuration-space
wave function of the coherent states |z > defined above:

=

-N
A 1+N>“
N
= 1
<zlz>=C ( 5 [ +N] , (14)
where
" 2.2
s = _’._:ﬁa: \/—za a = 1+w:c

+
AN _ I'(N)
¢ = \/ \J\/I_VF(N—%) (15)
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In the non-relativistic limit we regain the usual coherent states in configuration space:

1
< .’E!Z >N.R.= L (E)z e—z2/2+\/2mu//h:z:ze—%('—"i-“—’a:2+|z|2) (16)

VT \ hr

The uncertainty relations for the operators £ and p are:

h 1 1 1
A H — — 2 __ z 4 _ 2 =2 > - — A A
AZAp 2\/}: +4N2 [z}t - (22 + = )]_2hn 2|<[:1r:,p]>| (17)
The equality holds for z = |z]e™™, i.e. z € R, defining the so-called “intelligent states”, but only
for 2 = 0 (the vacuum) we reach the absolute minimum (see [12] for the calculations in the unit

Disk).

3 Canonical (higher-order) creation and annihilation op-
erators: canonical, relativistic coherent states.

The definition of polarization in group quantization can be generalized so as to admit operators
in the left enveloping algebra. This generalization has been already exploited in finding a position
operator for the free relativistic particle [13] (as well as in solving anomalous problems [2]). In the
present case it also makes sense to look for basic operators satisfying canonical (versus manifestly
covariant) commutation relations. Let us then seek a power series in XL and XL,

XLHO _ XL LS RLgLRL
XLHO X:_uXZLXZL__%XZLXjXZL_Xz’H—..., (18)

such that PHC =< X#HO, XLHO 5 contains X,’; and excludes X(L The coefficients of the power
series are determined by the requirement that P#© is a polarization and the corresponding right
operators define a unitary action on the wave functions ¥ which fortunately are the same as before.
More concretely,

[)"{LHO XLHO] — _9xLHO
n y €3z z”
[XxpHo xRHOL = i (19)

The resulting higher-order (canonical) creation and annihilation operator are:

1 3 7
~HO _—_ A _ 2 At A a At atana _ X
z = a—-z——(Z—N——32N2>ztzz+32N221ztzzz+...= X (20)
stwo = gt st [ 2
1+ &
and the energy operator is:
AHO = N(k-1)=dla (21)
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where £ = ‘/1 + —127 (212) and the operator 1/1_4275 must be considered as functions of the single

operator (éfé).
The commutation relations,

[a,af - 1
:
(740,48 = -a (22)
[ﬁ"o,a"- = af,

have the non-relativistic (canonical) form. Their action on the Fock space is:

an> = Vnjn—1>

itln> = Jm+D)n+1> (23)

Hn > = njn>,

which reproduces the non-relativistic harmonic oscillator representation, although it must be
stressed that the estates |n > are the same relativistic energy eigenstates as before.

3.1 Canonical coherent states.

It seems quite natural to define canonical coherent states |a > as the eigenstates of the canonical
annihilation operator, éla >= ala >, with solutions:

la >=eleF2 % \C/l——_|n >, (24)

— v/'n!

and define a non-relativistic Bargmann-Fock space in the usual way:

<aln >=< nla >*= e"“l?/za—n' = ¥R (g) (25)

The connection to the relativistic Bargmann-Fock space is given by

U (2) =<zla> = E < zln >< nla >= E‘Il (2)¥N-F(a)

1 2N =1 _ps (14 6\" Z1 (2N), { 2az* \"
V2N °© 2 I\ 2N) \1 + « (26)
1 2 2 .

~ _—o—lal®/2,-2]"/2 az _ _ 2 *

Noe e e { N [1 |z| az ) (3|z| az )] + }

The expectation value < a|Z|a > defines a classical function z = z(a) relating the variables
a,a* and z,z* as follows:

<altla>=a) ¢, <a (&t&) la > (27)
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where c, are the coefficients of the power series of f(u) = (/1 + 5%. Then we define:

@=y1+5 (29)
z(a) = —a

¢ 2N

Note that although < a| (dt&)n la >#< al&t"&"|a >= |a|*", any operator of the form F =

Oa™ (or G = &tPO), where [HHO O] = 0, defines a classical function F(a) (or G(a)) by the
formula:

#(a) =a” Zon|a|2 = a*p}:onla|2" | (29)

where < a|Ola >= ¥, 0, < q| (HHO) |a >

The functions
2
”1—{—& a*(z) = 1+,€ (30)

turn out to be the Darboux coordinates taking the symplectic form @ = i—dz A dz* to canonical
form = da A da”.
Finally, we define

= g (2 )
q = a+ta
2mw
h
To= m;u (&T~a> (31)
satisfying )
[q,7] = ¢hl, (32)

and their corresponding classical functions. For these operators we obviously obtain
.. h
AGAT = 5 (33)

on the |a > states.

4 Final Remarks

The construction of the canonical (higher-order) creation and annihilation operators al and @ in
the 141-D relativistic harmonic oscillator is a matter of convenience rather than a necessity since
a first-order polarization, the manifestly covariant one, P =< XL XL > exists. However, the
situation become quite different for the relativistic harmonic oscﬂlator with spin, at least from
a geometrical point of view. The reason is that the doubly pseudo-extended SO(3,2) (anti-de
Sitter) Lie algebra, containing the commutators

. . N ) G
(&, p;] = théi;(1 + m_c?'-E) (34)
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accounting for the masz, and the commutator
(Je,d1 =2 (Js +41) (35)

accounting for the spin, dbes not admit a consistent way (i.e. compatible with the rest of the
symmetry) of defining two sets of first-order conjugated creation-annihilation (hor co-ordinate-
momentum) operators. In other words, the system does not admit a (first-order) polarization
and therefore the Hilbert space of U(1)-equivariant complex functions on the group can be only
partially reduced [14]. The {ull reduction then requires the introduction of higher-order operators
in the polarization, generalizing those introduced here and accounting for proper intrinsic spin
operators.
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